
If software is transforming
society, politics, and business,
what does that mean about the
people who write the software?

Building Composable Abstractions

Eric Normand

Why focus on abstractions?

What is the process?

Can we see an example?

Conclusions

Refactoring

changing a software system in such a way that it
does not alter the external behavior of the code

Newton’s Laws of Motion

1. Inertia

2. Acceleration

3. Action-reaction

Force

Mass

Distance

Time

Aristotelian Physics
(excerpt)

Ideal speed

Natural place

Natural motion

Unnatural motion

–Eric Normand @ericnormand

“Choice of abstraction matters. There is no
way to refactor Aristotle into Newton.”

–Isaac Newton

“If I have seen further, it is by standing on the
shoulders of giants.”

–Isaac Newton

“If I have seen further, it is by standing on the
shoulders of giants.”

Newton had to invent Calculus to express his abstractions.

Best graph of the conference

–Eric Normand @ericnormand

“As programmers, we can create abstractions
as powerful as Newton every day.”

–Eric Normand @ericnormand

“Computer programming encourages
abstractions like Newtonian Mechanics instead

of Aristotelian Physics.”

–Eric Normand @ericnormand

“Cleaning up is important. But we don’t talk
enough about what to build in the first place.”

Objectives

Develop a process that

• Consistently produces good abstractions

• Anyone can do

• Fosters collaboration

Inspired by
Conal Elliott’s Denotational Design

Example:
Vector Graphics System

Quil

The Steps

1. Physical metaphor.

2. Meaning construction.

3. Implementation.

–Every experienced programmer, ever

“Don’t just start writing code.
Think about the problem first.”

1. Physical metaphor

Properties of a Good
Metaphor

• Answers most questions

• Shared experience

• Painting

• Stencils

• Clay

• Projected light

–Eric Normand @ericnormand

“Good metaphors contain answers to
important questions. Different metaphors might
have different answers to the same questions.”

Shapes in
construction paper

–Eric Normand @ericnormand

“A good metaphor gives you common ground
for discussion. You might disagree, but at least

you’re disagreeing about the same thing.”

How would you do it without computers?

–Eric Normand @ericnormand

“I’ve never met a good abstraction I couldn’t
turn into a good metaphor.”

• Our physical intuition is rich.

• Metaphors contain answers to questions.

• Physical metaphors keep you grounded while
abstracting.

• Physical metaphors are discussable.

Physical metaphor summary

2. Construction of
meaning

–Every programming teacher ever

“Focus first on the interface, not the
implementation.”

What is part of the interface and what is an
implementation detail?

• Distinguish between shapes

• Construct shapes

• Preservation of shape

• Preservation of color

• Overlay order

• Rotation and translation are independent

• Rotation is additive

• Translation is additive

Part of the Interface

Distinguish between shapes

Construct shapes

Preservation of shape

Preservation of color

Overlay order

–Eric Normand @ericnormand

“Avoid corner cases while you can. Corner
cases are multiplicative when you compose

them.”

Overlay order (retry)

Overlay order

Rotation and translation
independence

Rotation is additive

Translation is additive

–Eric Normand @ericnormand

“We make an abstraction composable by
carefully defining the meaning of composition.”

We forgot to draw

We only need two types

–Eric Normand @ericnormand

“Meanings you define have to bottom out
somewhere.”

–Eric Normand @ericnormand

“Choose meanings that have the structure
you’re looking for.”

Rectangles

Translation

Rotation

Overlay

draw!

Overlay

–Eric Normand @ericnormand

“Revisit your physical metaphor.
It contains the answers.”

Overlay with center

Step 2 Summary

• Preserve features you want to keep.
• Eliminate features you don’t need.
• No corner cases.
• Choose existing constructs that share structure.
• Choose existing constructs that are well-defined.
• Focus on composition.

3. Implementation

–Well-meaning Clojure programmers everywhere

“Just use a map.”

Refactoring

changing a software system in such a way that it
does not alter the external behavior of the code

Refactoring

changing a software system in such a way that it
does not alter the meaning of the code

Objectives

Develop a process that

• Consistently produces good abstractions

• Anyone can do

• Fosters collaboration

The Process
1. Physical metaphor

• Guidance and grounding

2. Construction of meaning

• Define the parts and their relationships

• Precise mathematical language

3. Implementation

• Refactoring to achieve meta-properties

Corollaries

• Know your domain (metaphor)

• Know your constructs (meaning)

• Know your refactorings (implementation)

Take it further
• Visit bit.ly/ComposableAbstractions

• Enter your email address

• I’ll send you

• Slides

• Links to the inspirations for this talk

• Other resources

http://bit.ly/ComposableAbstractions

